1. **Introduction**

- **Fingerspelling** is a tool to express a letter by a hand shape.
- **Main goal**: Detect and categorize fingerspelling in a continuous video as a mixture of fingerspelling sequences and irrelevant images.
- **Basic idea**: Divide a whole process into two-steps cascade process:
 1. **Spotting**: Segment and extract a fingerspelling sequence in an input video by utilizing temporal dynamic information.
 2. **Classification**: Classify the spotted sequence by utilizing 3D hand shape information.

Dataset:
- We recorded 15 fingerspelling classes by a depth camera.
- The hand region is extracted from the whole input image based on the depth map.
- We synthesized an input video, which continuously inputs fingerspelling and not fingerspelling sequences alternately.

Evaluation index:
- Spotting performance, Classification accuracy, and Recognition time.

2. **Classification process**

- **Step 1**: Spotsing process
 - Reference fingerspelling (X)
 - Segments a whole input video into fingerspelling sequences and irrelevant images.
 - Orthogonal Mutual Subspace Method (OMSM) with CNN features using hand shape information.

- **Step 2**: Classification process
 - Reference fingerspelling (X)
 - Spotted fingerspelling is classified by OMSM with CNN features using hand shape information.
 - The detailed procedure:
 1. 2.1. CNN features (f_j^t) and (f_j^{t+1}) are extracted from (y_{t+1}) and (X).
 2. Each class subspace (S_j) and an input subspace (S_0) are generated by applying PCA to the sets of CNN features.
 3. Orthogonal subspaces (S_j) and (S_0) are generated by applying orthogonal transformation to (S_j) and (S_0).
 4. The spotted fingerspelling is classified based on similarities between the input subspace (S_0) and reference subspaces (S_j).

Conclusions
- We proposed a fingerspelling recognition framework based on a complementary combination of TRCCA and OMSM with CNN features.
- We confirmed that our two-steps process significantly outperforms conventional one-step methods in terms of classification accuracy and recognition time.

References